Menu
Home Explore People Places Arts History Plants & Animals Science Life & Culture Technology
On this page
Strong monad
Category theory

In category theory, a strong monad is a monad on a monoidal category with an additional natural transformation, called the strength, which governs how the monad interacts with the monoidal product.

Strong monads play an important role in theoretical computer science where they are used to model computation with side effects.

Related Image Collections Add Image
We don't have any YouTube videos related to Strong monad yet.
We don't have any PDF documents related to Strong monad yet.
We don't have any Books related to Strong monad yet.
We don't have any archived web articles related to Strong monad yet.

Definition

A (left) strong monad is a monad (T, η, μ) over a monoidal category (C, ⊗, I) together with a natural transformation tA,B : ATBT(AB), called (tensorial) left strength, such that the diagrams

, , , and

commute for every object A, B and C.

Commutative strong monads

For every strong monad T on a symmetric monoidal category, a right strength natural transformation can be defined by

t A , B ′ = T ( γ B , A ) ∘ t B , A ∘ γ T A , B : T A ⊗ B → T ( A ⊗ B ) . {\displaystyle t'_{A,B}=T(\gamma _{B,A})\circ t_{B,A}\circ \gamma _{TA,B}:TA\otimes B\to T(A\otimes B).}

A strong monad T is said to be commutative when the diagram

commutes for all objects A {\displaystyle A} and B {\displaystyle B} .

Properties

The Kleisli category of a commutative monad is symmetric monoidal in a canonical way, see corollary 7 in Guitart2 and corollary 4.3 in Power & Robison.3 When a monad is strong but not necessarily commutative, its Kleisli category is a premonoidal category.

One interesting fact about commutative strong monads is that they are "the same as" symmetric monoidal monads.4 More explicitly,

  • a commutative strong monad ( T , η , μ , t ) {\displaystyle (T,\eta ,\mu ,t)} defines a symmetric monoidal monad ( T , η , μ , m ) {\displaystyle (T,\eta ,\mu ,m)} by m A , B = μ A ⊗ B ∘ T t A , B ′ ∘ t T A , B : T A ⊗ T B → T ( A ⊗ B ) {\displaystyle m_{A,B}=\mu _{A\otimes B}\circ Tt'_{A,B}\circ t_{TA,B}:TA\otimes TB\to T(A\otimes B)}
  • and conversely a symmetric monoidal monad ( T , η , μ , m ) {\displaystyle (T,\eta ,\mu ,m)} defines a commutative strong monad ( T , η , μ , t ) {\displaystyle (T,\eta ,\mu ,t)} by t A , B = m A , B ∘ ( η A ⊗ 1 T B ) : A ⊗ T B → T ( A ⊗ B ) {\displaystyle t_{A,B}=m_{A,B}\circ (\eta _{A}\otimes 1_{TB}):A\otimes TB\to T(A\otimes B)}

and the conversion between one and the other presentation is bijective.

References

  1. Moggi, Eugenio (July 1991). "Notions of computation and monads" (PDF). Information and Computation. 93 (1): 55–92. doi:10.1016/0890-5401(91)90052-4. http://www.disi.unige.it/person/MoggiE/ftp/ic91.pdf

  2. Guitart, René (1980). "Tenseurs et machines". Cahiers de topologie et géométrie différentielle. 21 (1): 5–62. ISSN 2681-2398. http://www.numdam.org/item/?id=CTGDC_1980__21_1_5_0

  3. Power, John; Robinson, Edmund (October 1997). "Premonoidal categories and notions of computation". Mathematical Structures in Computer Science. 7 (5): 453–468. doi:10.1017/S0960129597002375. ISSN 0960-1295. https://www.cambridge.org/core/product/identifier/S0960129597002375/type/journal_article

  4. Kock, Anders (1972-12-01). "Strong functors and monoidal monads". Archiv der Mathematik. 23 (1): 113–120. doi:10.1007/BF01304852. ISSN 1420-8938. https://link.springer.com/article/10.1007/BF01304852